Redox regulation in skeletal muscle during contractile activity and aging.

نویسندگان

  • J Palomero
  • M J Jackson
چکیده

Skeletal muscle has the ability to adapt and remodel after functional, mechanical, and metabolic stresses by activation of different adaptation mechanisms that induce gene expression, biochemical changes, and structural remodeling. Skeletal muscle cells continuously generate reactive oxygen and nitrogen species (RONS), which can act as mediators in cellular signaling pathways that regulate the adaptation mechanisms. There is strong evidence that indicates that RONS are generated in skeletal muscle cells during contractile activity and this induces the activation of transcription factors which modulate gene expression of antioxidant and protective proteins. Thus, it has been proposed that RONS act as signals that modulate the adaptation mechanisms in skeletal muscle and other cells. Structural and functional changes occur in skeletal muscle during aging and are characterized by a reduction of muscle mass and force (sarcopenia). The causes are known, however, there is considerable support for an involvement of RONS in the process of aging and sarcopenia. Several studies indicate that adaptive responses of skeletal muscle that are activated and regulated by RONS are disrupted during aging. This reduction of skeletal muscle adaptation to contractile activity during aging might be responsible for the loss of muscle mass and function and the progressive deterioration of this organ. In summary, there is sufficient evidence that indicates that cellular redox regulation in skeletal muscle is crucial in the physiology and pathology of skeletal muscle. However, new methodologies and experimental models are required for understanding the complex biology of RONS in the cell. This will provide future interventions that mitigate pathologies and aging of skeletal muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox regulation of muscle adaptations to contractile activity and aging

Superoxide and nitric oxide are generated by skeletal muscle, and these species are increased by contractile activity. Mitochondria have long been assumed to play the primary role in generation of superoxide in muscle, but recent studies indicate that, during contractile activity, membrane-localized NADPH oxidase(s) rapidly generate(s) superoxide that plays a role in redox signaling. This proce...

متن کامل

Editorial: Redox Regulation in Skeletal Muscle Aging and Exercise

Changes in population demographics have seen an increase in human lifespan coupled with an increase in many age associated disorders that determine quality of life including, sarcopenia, and frailty. Closing the gap between life expectancy and healthy aging has now become a research priority in many countries. Skeletal muscle comprises up to 40% of body mass and the inhibition or delay of the p...

متن کامل

Store-Operated Ca2+ Entry (SOCE) Contributes to Normal Skeletal Muscle Contractility in young but not in aged skeletal muscle

Muscle atrophy alone is insufficient to explain the significant decline in contractile force of skeletal muscle during normal aging. One contributing factor to decreased contractile force in aging skeletal muscle could be compromised excitation-contraction (E-C) coupling, without sufficient available Ca(2+) to allow for repetitive muscle contractility, skeletal muscles naturally become weaker. ...

متن کامل

Age-Associated Changes in Skeletal Muscle Regeneration: Effect of Exercise

Aim of the present short review is to provide a comprehensive update on age-associated skeletal muscle damage, regeneration, and effect of endurance and resistance type of exercise training on muscle regeneration. Decrease in muscle quantity and quality leads to disability in the aging population. The degradation rate of muscle proteins during aging increased about two times, and muscle strengt...

متن کامل

Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity.

Oxidative modification of cellular components may contribute to tissue dysfunction during aging. In skeletal muscle, contractile activity increases the generation of reactive oxygen and nitrogen species (ROS). The question of whether contraction-induced ROS generation is further increased in skeletal muscle of the elderly is important since this influences recommendations on their exercise part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2010